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Neutron crosstalk between liquid scintillators1

J.M. Verbeke∗, M.K. Prasad∗, N.J. Snyderman∗2

Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551, United States3

Abstract4

A method is proposed to quantify the fractions of neutrons scattering between liquid
scintillators. Using a spontaneous fission source, this method can be utilized to quickly
characterize an array of liquid scintillators in terms of crosstalk. The point model
theory due to Feynman is corrected to account for these multiple scatterings. Using
spectral information measured by the liquid scintillators, fractions of multiple scatter-
ing can be estimated, and mass reconstruction of fissile materials under investigation
can be improved. Monte Carlo simulations of mono-energetic neutron sources were
performed to estimate neutron crosstalk. A californium source in an array of liquid
scintillators was modeled to illustrate the improvement of the mass reconstruction.

Keywords: liquid scintillators, crosstalk, multiple scattering, neutron multiplicity,5

neutron correlation, fissile materials6

1. Introduction7

The purpose of this work is to quantify the fractions of fast neutrons scattering8

between adjacent liquid scintillators, a phenomenon known as neutron crosstalk. We9

propose a new method to quantify them. While this paper will focus on theoretical10

development to model neutron crosstalk, and show simulation results, the strength of11

this new method lies in that it can be used to determine neutron crosstalk experimen-12

tally using fissile materials as neutron sources. This will enable experimentalists to13

quickly characterize their array of liquid scintillators in terms of multiple scattering14

fractions/neutron crosstalk, the same way as instruments are calibrated in energy, and15

detectors are synchronized in time, prior to taking data. The authors are currently16

working on a second paper, where an array of liquid scintillators is thus characterized17

experimentally. Preliminary results are available in Ref. [1].18

It is well known [2, 3, 4, 5] that masses of nuclear materials undergoing fissions19

can be determined using 3He tubes counting thermal neutrons. For general neutron20

multiplicity counting (NMC) applications, the theory usually assumes that neutrons21

can only be counted once. This assumption is correct for 3He tubes, where neutrons22

are captured when counted. However, for liquid scintillators, a neutron can scatter and23

deposit enough energy in multiple liquid scintillators to record multiple counts. The24

measured count rate and the two- and three-neutron correlations will thus be adversely25

increased. NMC applications are very sensitive to two-, three- and higher order correla-26

tions. With fast neutrons registering multiple correlated counts, the standard Feynman27
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moment method [2, 3, 4, 5] will fail. In this paper, new expressions of the Feynman28

correlated moments are proposed to account for multiple scattering.29

A summary of this paper is as follows. In Sec. 2, we derive new expressions for the30

Feynman correlated moments to account for individual neutrons scattering and record-31

ing multiple counts in detectors.32

Since neutron crosstalk depends on the energy of the neutrons incident on the detec-33

tors, it must be characterized as a function of this incident neutron energy. In Sec. 3, we34

simulate the liquid scintillator response to different mono-energetic neutron sources,35

from which we infer the spectrum of incident neutrons (Sec. 4), and in turn the expected36

multiple scattering fractions (Sec. 5). The inferred neutron source energy spectrum re-37

veals information about the source under investigation. This spectral information has38

been successfully used experimentally in Ref. [6].39

In the last part of this paper, Sec. 6, we simulate a 252Cf source in an array of40

liquid scintillators. We will show that the multiple scattering fractions inferred from41

the spectrum of deposited energies can be used to apply corrections to the masses of42

fissile materials undergoing fission.43

A list of symbols used throughout the text is available in the appending nomencla-44

ture.45

2. Theory46

When a multipling object is placed in the center of a liquid scintillator array such47

as the one shown in Fig. 1, one can experimentally measure the times of arrival of the48

neutrons in each of the liquid scintillators. Randomly splitting the sequence of time

Figure 1: Multiplying object in the middle of a 77 liquid scintillator array.
49

tags into N segments of duration T , 1 one can count how many neutrons arrive in the50

1T is of the order of nanoseconds to hundreds of microseconds.
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first segment, how many in the second segment, in the third one, etc. and build the51

distribution Bn(T ) of the number of neutrons n arriving in the segments of duration52

T . By repeating this procedure for segments of different durations T , multiple count53

distributions Bn(T ) can be obtained.54

These count distributions Bn(T ) can be used to determine the intensity Fs of the
spontaneous fission sources in the object, the efficiency ε of the liquid scintillator array
and the multiplication M of the multiplying object. This will be shown by way of the
following three equations. Defining bn(T ) as the probability distribution of the count
distribution Bn(T ),2 one can show theoretically that the first moment of the probability
distribution bn(T ) can be written as [3, 4]

C̄ (T ) = εqMν̄spFs (1+A)T (1)

where Fs is the intensity of the spontaneous fission source (in units of spontaneous
fissions per second), and A is the α-ratio3, i.e. the ratio of neutrons emitted by sources
emitting single neutrons to neutrons emitted by sources emitting multiple neutrons
simultaneously. In this equation, let us recall that the multiplication M is defined as

M =
1

1− pν̄
(2)

where p is the probability that a neutron will fission a nucleus, and q = 1− p is the
probability that a neutron does not induce fission. qM is usually referred to as the
escape multiplication4 and is given by

qM = M− (M−1)/ν̄ (3)

The symbols ν̄ and ν̄sp are the average numbers of neutrons emitted per induced and
spontaneous fissions, respectively. ν̄ can be calculated as

ν̄ =

8∑
n=1

nCn (4)

where Cn is the probability of emitting n neutrons per induced fission. The upper55

limit of 8 on the summation sign is the largest number of neutrons that known isotopes56

produce per fission. The probability distribution C depends on the energy of the neutron57

inducing fission. To obtain ν̄sp, the multiplicity distribution C is replaced by Csp.58

For time-gated fast neutron counting, the Feynman correlated moment Y2F , which
is the excess over unity of the variance to mean ratio of bn(T ), or physically speaking
the correlated pairs relative to the counts, is a generalization of Eq. (132) in Ref. [4]
divided by C̄ (T ) (Eq. (1) above),

Y2F (T ) = εqM
[

D2s

1+A
+(M−1)D2

](
1− 1− e−αT

αT

)
(5)

2This is equivalent to normalizing Bn(T ) by the number of segments of duration T : bn (T ) = Bn (T )/N.
3We use A in lieu of α for the alpha-ratio, we reserve the greek letter α for the inverse fission chain

evolution time scale.
4Or leakage multiplication.
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where α is a time constant related to the transport of the neutrons in both the measured
object and the detection system. D2s, D2 are combinatorial moments of spontaneous
and induced fission multiplicity distributions. They depend on nuclear data, and are in
general given by

Dn =

∑8
i=n
( i

n

)
Ci

ν̄
. (6)

For spontaneous fission nuclear data, Dn sp is calculated similarly, replacing the multi-59

plicity distribution C by the multiplicity distribution Csp.60

Y3F , which is the skewness to mean ratio of bn(T ), or physically speaking the cor-
related triples relative to the counts, is a generalization of Eq. (133) in Ref. [4] divided
by C̄ (T ) (Eq. (1) above),

Y3F = (εqM)2[[
D3s

1+A
+(M−1)D3

](
1− 3−4e−αT + e−2αT

2αT

)
+

[
2(M−1)

D2sD2

1+A
+2(M−1)2 D2

2

](
1− 2− (2+αT )e−αT

αT

)]
(7)

It is important to note that for uncorrelated random Poisson sources, Y2F and Y3F are
identically zero and therefore provide a quantitative measure of correlation. We define
R3F1 and R3F2 as

R3F1 = (εqM)2
[

D3s

1+A
+(M−1)D3

]
(8)

R3F2 = (εqM)2
[

2(M−1)
D2sD2

1+A
+2(M−1)2 D2

2

]
(9)

so that Eq. (7) can be rewritten as

Y3F = R3F1

(
1− 3−4e−αT + e−2αT

2αT

)
+R3F2

(
1− 2− (2+αT )e−αT

αT

)
(10)

Fig. 2 shows an example of Y2F (T ) and Y3F (T ). The time constant α−1 is 6 ns and the61

asymptotical value of Y2F (T ) is 0.1174.62

The slope of Eq. (1) and the asymptotes of Eqs. (5) and (7) for large time gate
durations T can be written as

R1 = εqMν̄spFs (1+A)

R2F = εqM
[

D2s
1+A +(M−1)D2

]
R3F = (εqM)2

[
D3s
1+A +(M−1)D3 +2(M−1) D2sD2

1+A +2(M−1)2 D2
2

] (11)

This system of 3 equations has 4 unknowns ε , M, Fs and A. In the absence of (α ,n)
sources which emit single neutrons at a time, the ratio A is equal to zero. In this case,
the system of equations (11) reduces to

R1 = εqMν̄spFs

R2F = εqM [D2s +(M−1)D2]

R3F = (εqM)2
[
D3s +(M−1)D3 +2(M−1)D2sD2 +2(M−1)2 D2

2

] (12)
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Figure 2: Examples of Y2F (T ) and Y3F (T ). λ−1 refers to α−1.

2.1. Detector corrections63

These equations rely on the assumption that each neutron in the system can be
detected only once. This is certainly true for a detection system based on 3He tubes,
because 3He captures the neutron and the neutron disappears from the system. It is
different in an array of liquid scintillators, because neutrons in such a system deposit
energy in scintillators by scattering with the atoms, and are not absorbed in these elastic
and inelastic scattering collisions. They keep traveling, and if they still have enough
energy, they can potentially deposit this energy in adjacent or even remote scintillators.
If a neutron scatters multiple times between liquid scintillators, Eqs. (1), (5) and (7)
no longer hold. They can however be replaced by ones that account for the multiple
scattering of neutrons (the derivation of these equations is in Appendix A and assumes
no more than triply counted neutrons. 5):

C̄ (T ) =
[
(1− f2− f3)+

(2
1

)
f2 +

(3
1

)
f3

]
R∗1T

Y2F (T ) = f2+3 f3
1+ f2+2 f3

+(1+ f2 +2 f3)εqM
[

D2s
1+A +(M−1)D2

](
1− 1−e−αT

αT

)
Y3F (T ) =

f3
1+ f2 +2 f3

+2( f2 +3 f3)εqM
[

D2s

1+A
+(M−1)D2

](
1− 1− e−αT

αT

)
+(1+ f2 +2 f3)

2 (εqM)2[[
D3s

1+A
+(M−1)D3

](
1− 3−4e−αT + e−2αT

2αT

)
+

[
2(M−1)

D2sD2

1+A
+2(M−1)2 D2

2

][
1− 2− (2+αT )e−αT

αT

]]
.

(13)

R∗1 is the hypothetical count rate which one would measure if individual neutrons could
not be counted multiple times, as opposed to the measured count rate R1 which includes
2 counts instead of 1 for each double scatter and 3 counts instead of 1 for each triple

5While the derivations in Appendix A could easily be generalized to neutrons scattering any number of
times, equations (13) assume that individual neutrons do not register counts in more than 3 liquid scintillators
on physical grounds laid out below.
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scatter. 6 f2 is the ratio of the doubles rate to R∗1, f3 is the ratio of the triples rate to R∗1.
For multiple scattering, R1 is defined as

R1 = (1+ f2 +2 f3)R∗1 (14)

The first equation for C̄ (T ) in the system of equations (13) is the sum of three terms,64

all factors of R∗1T . The first term is the fraction of single neutrons that are counted65

as such, the second term is
(2

1

)
times the fraction of single neutrons that are counted66

twice, the third term is
(3

1

)
times the fraction of single neutrons that are counted thrice.67

As a matter of consistency, let us assume the case where single neutrons always double68

scatter but never triple scatter. In this case f2 is 1 and f3 is 0, so that the number of69

counted neutrons within a time gate T is C̄ (T ) =
(2

1

)
R∗1T , which is twice the number70

of real single neutrons. The same could be said for the case of neutrons always triple71

scattering.72

Let us examine the assumption that neutrons cannot register counts in more than73

3 liquid scintillators. For a single neutron to deposit more than 1.2 MeV — which74

is approximately the liquid scintillator threshold energy for detecting fast neutrons —75

in 4 different liquid scintillators, it would theoretically only need to have an initial76

energy of 4.8 MeV. In reality however, a neutron would need to have a much higher77

energy to record counts in 4 different liquid scintillators with a reasonable probability.78

In Fig. 3, we show that the probability of a neutron registering 4 counts in 4 different79

liquid scintillators is negligible for any neutron below 10 MeV. Since the purpose here
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Figure 3: Fraction of detected neutrons registering four counts in the liquid scintillators, as a function of the
source neutron energies.

80

is to study fast neutrons with energies similar to the ones found in fission spectra, we81

can safely neglect any multiple scattering greater than 3.82

Once we know f2 and f3, and if we assume that A is zero, the system of equa-83

tions (13) corrected for multiple scattering can be solved for the three system parame-84

ters: the intensity Fs of the spontaneous fission source, the multiplication M of the ob-85

ject, and the efficiency ε of the detection system. Our goal is to determine whether the86

6To illustrate R∗1, if a neutron was to multiple scatter between different liquid scintillators, this neutron
would contribute only a single count towards the hypothetical R∗1, in lieu of contributing multiple counts.
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multiple scattering fractions f2 and f3 can be determined from measuring the spectrum87

of energies deposited by the fast neutrons from a single measurement, that is without88

any prior measurement. If this were the case, we could easily use these fractions to89

apply a correction to the system parameters.90

3. Neutron energy sensitivity study91

In this section, we are studying the detector response to isotropic and mono-energetic92

neutron sources. The goal is to determine whether spectral information measured ex-93

perimentally by the detectors can be used to infer the energy distribution of the neutrons94

entering the detectors7, and in turn to infer the multiple scattering values f2 and f3. In95

Secs. 4 and 5, we will infer the values of f2 and f3 from this spectral information.96

For this study, we considered the liquid scintillator array shown in Fig. 1. We97

placed a point neutron source in the middle of the array of liquid scintillators depicted98

in Fig. 1. Neutrons are emitted isotropically and one at a time from that point source.99

For 19 different mono-energetic neutron beams ranging from 1 MeV to 10 MeV in100

increments of 0.5 MeV, we use the Monte Carlo radiation transport code MCNPX [7, 8]101

to transport the neutrons from the point source in the middle of the array through the102

geometry consisting of the array of liquid scintillators. The black curve in Fig. 4 shows103

the energies of the neutrons entering the liquid scintillators, that had an initial kinetic104

energy of 10 MeV. These were calculated by MCNPX using a flux tally. The other colors105

correspond to neutrons with different initial kinetic energies. One notices that most
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Figure 4: Energy distributions of fast neutrons entering the liquid scintillators as tallied by a MCNPX flux
tally. The different colors refer to the different initial neutron energies. (For interpretation of the references
to color in this figure caption, the reader is referred to the web version of this paper.)

106

neutrons enter the liquid scintillators with their full initial energy, but there is also107

a second relatively strong peak from neutrons which have been thermalized by the108

hydrogen in the liquid scintillators themselves.109

In liquid scintillators, the reaction used for neutron detection is inelastic scatter-110

ing of neutrons primarily on hydrogen, producing a recoil proton from which scin-111

tillation light is emitted. A decade ago, LLNL developed a customized version [9]112

7Or the energy distribution of the neutron source itself if it is not shielded.
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Figure 5: Electron-equivalent energy distribution measured by the liquid scintillators as predicted by MCNPX.
The different colors refer to the different initial neutron energies. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)

of MCNPX which writes out detection events to an output file in “list-mode”. Using a113

quench function, each individual proton recoil energy in this file is converted to a cor-114

responding electron-equivalent energy Ed , in terms of scintillation light output. This115

electron-equivalent energy is what liquid scintillators effectively measure and has units116

of MeVee. The measured spectrum of energies deposited by fast neutrons is shown in117

Fig. 5, where multiple scattering of neutrons is included. This figure shows that source118

neutrons with different energies produce different responses, that is different measured119

spectra in the liquid scintillators. This differentiation is the basis for inferring the en-120

ergy spectrum of the neutrons incident on the liquid scintillators, from the measured121

spectrum in the scintillators.122

The last set of curves in Fig. 6 shows the probability density functions for the123

electron-equivalent energies deposited by the neutrons in the liquid scintillators. To124

produce these distributions, each distribution in Fig. 5 was normalized, and each bin of125

the normalized distribution was divided by the bin width. Integrated over the energy126

range, each cumulative density function thus produced is equal to 1.
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Figure 6: Probability density functions of the energy distributions measured by the liquid scintillators as
predicted by MCNPX. The different colors refer to different initial neutron energies. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)

127
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3.1. First method to determine multiple scattering fractions128

For these 19 initial neutron energies between 1 MeV and 10 MeV, we computed
the fractions of single source neutrons registering counts in two and three liquid scin-
tillators. The simulations were such that (a) the system does not multiply neutrons, so
that both M and qM are equal to 1, and (b) neutrons are emitted one at a time, so that
both D2s and D3s are zero. In these conditions, many terms disappear in the system of
equations (13), and we can write the following equations that apply to non-multiplying
sources emitting single neutrons at a time:

C̄ (T ) = (1+ f2 +2 f3)R∗1T
Y2(T ) = ( f2 +3 f3)R∗1T
Y3(T ) = f3R∗1T

(15)

where Y2 (T ) and Y3 (T ) are equal to Y2F (T )C̄ (T ) and Y3F (T )C̄ (T ), respectively. This129

system of 3 equations has 3 unknowns. The fractions of doubles f2 and triples f3130

as well as the hypothetical count rate R∗1 can be determined by taking the slopes of131

Eqs. (15).132

Let’s look at the quantities C̄ (T ), Y2 (T ), and Y3 (T ) calculated from a MCNPX Monte133

Carlo simulation of a weak 8 MeV-neutron source in the middle of the 77 liquid scin-134

tillator array (depicted in Fig. 1). Using LLNL’s customized version [9] of MCNPX, neu-135

trons are transported from spontaneous fission to the liquid scintillators, where their136

times of detection are recorded. Splitting the sequence of time tags into segments as137

explained in Sec. 2, we build count distributions Bn (T ). In the top left quadrant of138

Fig. 7, the blue points are Bn (T ) for T=512 ns. In the other 3 quadrants, C̄ (T ), Y2 (T )139

and Y3 (T ) were calculated from this 512 ns count distribution, as well as for 5 other140

Monte Carlo generated count distributions for time gate durations in geometric pro-141

gression between 16 and 512 ns. The green curves are analytical (see Eqs. (16) below)142

fits to the blue Monte Carlo data points. The slopes of C̄ (T ) in the top right quadrant,143

of Y2 (T ) and Y3 (T ) in the bottom quadrants of Fig. 7 are the factors of T in Eqs. (15)144

and (16).145

Given the size of the liquid scintillators (10-cm-diameter), and the speed of∼1.5 cm/ns
of 1 MeV neutrons, it would take a neutron at least 7 ns to register a count in a scintilla-
tor, register a count in a second scintillator and travel 10 cm to get to a third scintillator.
Even for 4 MeV neutrons traveling twice as fast, it would take 3.5 ns for them to reg-
ister counts in 3 different scintillators. From this follows that the slope of Y3 (T ) is
not quite as steep when T is close to 0. The same applies to Y2 (T ). Because of this
unmodeled latency — even though short — Y2 (T ) and Y3 (T ) in Fig. 7 are not exactly
fit by the linear functions (15), but by affine versions thereof with identical slopes:

C̄ (T ) = (1+ f2 +2 f3)R∗1T
Y2(T ) = ( f2 +3 f3)R∗1

(
T −T 0

2
)

Y3(T ) = f3R∗1
(
T −T 0

3
) (16)

The values of f2, f3 and R∗1 can be determined by solving the system of equations (16).146

Interestingly, T 0
2 and T 0

3 give orders of magnitude for the times it takes for neutrons147
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Figure 7: Count distribution Bn(T=512 ns), C̄ (T ), Y2 (T ) and Y3 (T ) as a function of time gate width T , for
T ranging between 16 ns and 512 ns. C̄ (T ), Y2 (T ) and Y3 (T ) are fit using Eqs. (16). The data are from a
MCNPX simulation of 8 MeV neutrons in the middle of the liquid scintillator array shown in Fig. 1. Blue is
Monte Carlo data, green is theoretical fit. (For interpretation of the references to color in this figure caption,
the reader is referred to the web version of this paper.)

to register 2 and 3 liquid scintillator counts, respectively. Fig. 7 reveals that 8-MeV148

neutrons take in average ∼6.6 ns to scatter from one liquid scintillator to another one,149

while they take in average ∼12 ns to scatter from one liquid scintillator to two other150

ones, consecutively. The reason why triple-scattering does not take twice as long as151

double-scattering can be explained. When a neutron scatters and records counts in 2152

scintillators, the energy of the neutron between the first and second scintillators can be153

as low as 1.2 MeV (threshold for detection of fast neutrons). For a neutron to scatter154

and record counts in 3 scintillators, the energy of the neutron between the first and155

second scintillators has to be at least 2.4 MeV. Otherwise, the fast neutron — which156

needs to deposit at least 1.2 MeV in the second scintillator to be counted, and would157

thus be left with at the most 1.2 MeV after the second scintillator — would not have158

the required 1.2 MeV of energy to record a count in a third scintillator. Therefore, for159

three counts to be recorded, the speed of the neutron between the first and the second160

scintillator has to be at least 1.4 times greater than the speed of a neutron recording161
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only two counts. Thus, we can conclude that the time it takes for a neutron to record 3162

counts in a liquid scintillator array will be less than twice the time it takes for a neutron163

to record 2 counts in the same liquid scintillator array. We should point out that the164

quantities T 0
2 and T 0

3 in Eqs. 16 are small, and that their introduction negligibly affects165

the slopes. Therefore, Eqs. 15 will be used from now on.166

The fractions f2 and f3 of neutrons scattering multiple times and registering two167

and three counts in the liquid scintillator array are shown in Fig. 8 for a range of source168

neutron energies. The fraction of neutrons scattering multiple times and registering
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Figure 8: Fractions f2 and f3 of detected neutrons registering two and three counts in the liquid scintillator
array, as a function of the source neutron energies.

169

four counts in the liquid scintillator array is shown in Fig. 3. For all simulations, the170

threshold for detection in the liquid scintillators was set to 250 keVee. This value is171

not arbitrary, and corresponds to the energy above which pulse shape discrimination172

for liquid scintillators works well. Below 250 keVee, neutrons and photons cannot be173

distinguished as reliably.174

Because the count rate is artificially inflated by the neutrons registering multiple175

counts in the liquid scintillator array, the hypothetical count rate differs from the mea-176

sured count rate as shown in Fig. 9. This figure shows the hypothetical count rate R∗1177

and measured count rates R1 as a function of the source neutron energies. Note that178

the 3 plotted count rates are exactly matched up to 3 MeV, and are thus hidden behind179

each other. Furthermore, the “Measured count rate R1” and “Count rate R1 determined180

by method 2” are indistinguishable all the way to 10 MeV.181

The right graph in Fig. 9 shows the absolute neutron detection efficiency of the182

liquid scintillator array. The detection efficiency is maximum for neutron energies183

around 3.5 MeV and 4 MeV, and decreases steadily as the neutron energy increases.184

Fast neutrons 1 MeV and lower are undetectable. This is because 1 MeV neutrons185

produce quenched energies of the order of 250 keVee, which is our detection threshold,186

as explained above.187

The fractions f2 and f3 of neutrons scattering multiple times are listed in table 1188

for different mono-energetic neutron sources.189
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equations (13) and the count rate predicted by the second method, as a function of the different initial neutron
energies. Neutron detection efficiency of liquid scintillator array, as a function of neutron energy.

Table 1: Fractions f2 and f3 of neutrons double- and triple-scattering
between liquid scintillators in the liquid scintillator array shown in
Fig. 1, for mono-energetic and fissile neutrons. The liquid scintillator
energy threshold is 250 keVee.

Neutron source f2 [%] f3 [%]
1.5 MeV 0.000e+00 0.000e+00
2.0 MeV 0.000e+00 0.000e+00
2.5 MeV 0.000e+00 0.000e+00
3.0 MeV 5.008e-02 0.000e+00
3.5 MeV 1.808e-01 0.000e+00
4.0 MeV 6.746e-01 0.000e+00
4.5 MeV 1.199e+00 0.000e+00
5.0 MeV 1.678e+00 0.000e+00
5.5 MeV 2.088e+00 1.188e-03
6.0 MeV 2.408e+00 3.843e-03
6.5 MeV 2.506e+00 6.802e-03
7.0 MeV 2.695e+00 1.129e-02
7.5 MeV 3.056e+00 1.516e-02
8.0 MeV 3.034e+00 1.763e-02
8.5 MeV 2.998e+00 2.510e-02
9.0 MeV 3.153e+00 3.195e-02
9.5 MeV 3.094e+00 3.219e-02

10.0 MeV 3.086e+00 3.355e-02
238U 2.786e-01 0.000e+00

240Pu 3.875e-01 3.407e-04
252Cf 4.245e-01 9.739e-04

2.2 MeV (Fig. 12) 0.000e+00 0.000e+00
4.4 MeV (Fig. 10) 1.113e+00 0.000e+00
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Neutron source f2 [%] f3 [%]
7.24 MeV (Fig. 11) 2.680e+00 1.307e-02

One should point out that the multiple scattering fractions f2 and f3 greatly depend190

on the geometry of the liquid scintillator array and on the energy threshold of the liquid191

scintillators. The values in table 1 are only valid for the geometry shown in Fig. 1 and192

for a liquid scintillator energy threshold of 250 keVee.193

3.2. Second method to determine multiple scattering fractions194

To make sure the analysis using the system of equations (13) was derived prop-195

erly, we derived the numbers of multiple scatterings not from a statistical perspective,196

but from an alternative second method. This can be done simply using the procedure197

described here: each fast neutron count registered by the liquid scintillators triggers198

a time window of duration T and one counts how many fast neutrons are within that199

window. If there is one fast neutron in the window, then this count along with the one200

that triggered the window will be consolidated into a single double scattering count. If201

there were two fast neutrons in the window, then these 2 counts along with the trigger202

count will be consolidated into a single triple scattering count. The empty windows are203

considered single scattering events, because they only contain the trigger event. The204

fractions of doubles and triples are quasi-identical to the ones shown in Fig. 8, the count205

rates do not differ much either, as shown by the “method 2” line in Fig. 9. These two206

ways of producing the same data gives us confidence that the models used to predict207

the unknowns R∗1, f2 and f3 are correct.208

209

The advantage of the method laid out in Sec. 3.1 is on the experimental side. When
measuring the double and triple-scattering fractions of neutrons experimentally, the
method does not require a neutron source emitting single neutrons (such as AmBe or
AmLi). Any non-multiplying (M=1) spontaneous fission source (such as 252Cf) of
known source intensity ν̄spFs can be used to measure the multiple scattering fractions
using the system of equations derived from Eqs. (13):

R1 = (1+ f2 +2 f3)εν̄spFs

R2F = f2+3 f3
1+ f2+2 f3

+(1+ f2 +2 f3)εD2s

R3F =
f3

1+ f2 +2 f3
+2( f2 +3 f3)εD2s +(1+ f2 +2 f3)

2
ε

2D3s

(17)

as long as the source is not contaminated by (α ,n) neutrons8. Using a time-tagged210

252Cf source for instance, we can experimentally measure R1, R2F and R3F , and solve211

the system of equations (17) for ε , f2 and f3. This is an important advantage over212

method 2, which intrinsically does not account for the fact that spontaneous fissions213

emit multiple neutrons simultaneously.214

8This is a permissible approximation for a pure, non-sealed and unshielded source.
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If the intensity of the non-multiplying spontaneous fission source is not known, we
can use the equation for R4F as well:

R4F =

(
( f2 +3 f3)

2

1+ f2 +2 f3
+2 f3

)
εD2s +3(1+ f2 +2 f3)( f2 +3 f3)ε

2D3s +(1+ f2 +2 f3)
3

ε
3D4s

(18)

4. Input spectrum reconstruction215

Before trying to determine the factors f2 and f3, we will see if we can reconstruct216

the spectra of 3 different mono-energetic neutron sources, based on the set of measured217

spectra shown in Fig. 5. We use the subscript Ei to distinguish each one of the basis218

functions gEi (Ed) shown in Fig. 5. The subscript Ei denotes the initial source neutron219

energy, from 1 MeV up to 10 MeV, in increments of 0.5 MeV. Given a measured spec-220

trum g̃(Ed), the goal for the reconstruction is to find the set of weights wEi for which221

the difference between g̃(Ed) and the reconstructed liquid scintillator energy spectrum222

is minimized. Each weight wEi is physically to be interpreted as the intensity of the223

neutron source in the energy bin around Ei.9224

Let’s call gr (Ed) the reconstructed energy deposition spectrum. gr (Ed) is defined
as

gr (Ed) =

19∑
i=1

wEigEi (Ed) (19)

The optimal set of weights wEi will be such as to minimize

gr (Ed)− g̃(Ed) (20)

In order to minimize Eq. (20), we use χ2 minimization algorithm implemented by
Minuit in ROOT [10]. Based on this optimization, an estimate of the source neutron
spectrum will be given by the energies Ei weighed by the weights wEi . For mono-
energetic neutron sources, the estimated average source neutron energy Eest will be
given by the wEi weighed average of the Ei.

Eest =

19∑
i=1

wEiEi (21)

Based on the solution set for the weights wEi , we can estimate the spectrum of
electron-equivalent energies deposited by the neutrons in the liquid scintillator using

gest (Ed) =

19∑
i=1

wEigEi (Ed) (22)

9If the distribution g̃(Ed) is normalized, the weights wEi will be the relative intensities of the different
neutron sources of energy Ei.
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4.1. Reconstruction of mono-energetic neutron sources225

We ran a few Monte Carlo simulations similar to the ones in Sec. 3, but with en-226

ergies not among the Ei for which we have basis functions. The first simulation was227

a mono-energetic 4.4 MeV neutron source. The blue histogram in Fig. 10a shows the228

spectrum measured by the modeled liquid scintillators, along with the best reconstruc-229

tion gest (Ed) in red. The reconstruction gest (Ed) is not perfect but nonetheless a very230

good approximation of g̃(Ed). Fig. 10b shows the reconstruction of the neutron source231

spectrum, which is basically the set of weights wEi . Using Eq. (21), the reconstructed
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Figure 10: (a) Measured spectrum g̃(Ed) (blue) and reconstructed spectrum gest (Ed) (red) of energies de-
posited by the neutrons, evaluated from Eq. (22). (b) Reconstruction of the source neutron energy spectrum.
The estimated average source neutron energy is 4.406 MeV. The data is from a MCNPX simulation of a mono-
energetic 4.4 MeV neutron source. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)

232

average neutron source energy was estimated to be 4.406 MeV.233

The second and third simulations are mono-energetic 7.24 MeV and 2.2 MeV neu-234

tron source in the middle of the same liquid scintillator array. The blue histograms in
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Figure 11: (a) Measured spectrum g̃(Ed) (blue) and reconstructed spectrum gest (Ed) (red) of energies de-
posited by the neutrons, evaluated from Eq. (22). (b) Reconstruction of the source neutron energy spectrum.
The estimated average source neutron energy is 7.51 MeV. The data is from a MCNPX simulation of a mono-
energetic 7.24 MeV neutron source. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)

235

Figs. 11a and 12a show the spectra g̃(Ed) measured by the liquid scintillators, along236
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with the best reconstructions gest (Ed) in red. Figs. 11b and 12b show the reconstruc-237

tions of the neutron source spectra. The average energies determined from the recon-238

structions were 7.51 MeV and 2.22 MeV. From these few data points, we observe that239

the predictions of the source neutron energies are good, but not perfect. Fig. 11b in-240

deed shows that there is a somewhat unexpected secondary peak at 8.5 MeV, while we241

would have expected a secondary peak at 7.5 MeV.242
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Figure 12: (a) Measured spectrum g̃(Ed) (blue) and reconstructed spectrum gest (Ed) (red) of energies de-
posited by the neutrons, evaluated from Eq. (22). (b) Reconstruction of the source neutron energy spectrum.
The estimated average source neutron energy is 2.22 MeV. The data is from a MCNPX simulation of a mono-
energetic 2.2 MeV neutron source. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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4.2. Reconstruction of spontaneous fission sources243

The next test is to see whether the reconstruction algorithm could predict the neu-244

tron spectrum emitted by spontaneous fission sources. Of course, the caveat here is245

one should not expect to predict the source neutron spectrum under approximately246

1.25 MeV, since liquid scintillators cannot reliably distinguish neutrons from photons247

neutrons below that energy.248

We performed a simulation of a 252Cf source. Fig. 13a shows the measured spec-249

trum g̃(Ed) in blue and the reconstructed spectrum gest (Ed) in red. The reconstruction250

of the source neutron spectrum is shown in Fig. 13b. As expected, the source neutron251

spectrum reconstruction fails below 1.5 MeV for the reasons mentioned above. The252

estimated average source neutron energy is 3.05 MeV, but this value cannot be com-253

pared to the true average energy of 252Cf spontaneous fission neutrons, because it is254

computed over the truncated energy distribution shown in Fig. 13b.255
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Figure 13: (a) Measured spectrum g̃(Ed) (blue) and reconstructed spectrum gest (Ed) (red) of electron-
equivalent energies deposited by the neutrons, evaluated from Eq. (22). (b) Reconstruction of the source
neutron energy spectrum (red), along with the true 252Cf spectrum (blue) from Ref. [11]. The data is from a
MCNPX simulation of a 252Cf source. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)

5. Prediction of multiple scattering correction256

To predict multiple scattering corrections, we first measure the spectrum of fast
neutrons in the liquid scintillators. Then the basis functions given in Fig. 4 are used to
reconstruct the measured spectrum by minimizing Eq. 20. This minimization process
will produce the weights wEi in gr (Ed) (see Eq. 19). Knowing these weights, we can
estimate the fraction of double scattering f2 and triple scattering f3 by weighing the
fractions f2 (Ei) and f3 (Ei) at different source energies Ei by wEi :

f2 =

19∑
i=1

wEi f2 (Ei) (23)

f3 =

19∑
i=1

wEi f3 (Ei) (24)
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The functions f2 (Ei) and f3 (Ei) are the curves shown in Fig. 8. Values for f2 and f3257

are also given in Table 1. For the 3 mono-energetic neutron sources of section 4.1, and258

the 252Cf source of section 4.2, the estimated fractions f2 and f3 are given in table 1.259

6. Application to NMC: mass correction using multiple scattering correction260

A Monte Carlo simulation was run to see if the intensity of a 252Cf source could be261

more accurately determined using the multiple scattering correction factors f2 and f3.262

For this simulation, we used the same geometry as for the previous cases. The input263

source intensity was 39,761 neutrons/s. The count distribution Bn, along with C̄, Y2F264

and Y3F are shown in Fig. 14.265
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Figure 14: Count distribution Bn (T = 20 µs) and C̄ (T ), Y2 (T ) and Y3 (T ) as a function of time gate width
T . λ−1 denotes α−1. C̄ (T ), Y2 (T ) and Y3 (T ) are fit using Eqs. (1), (5) and (7), with A set to 0. The data are
from an MCNPX simulation of a 252Cf source in the middle of the liquid scintillator array shown in Fig. 1.

If we assume a multiplication10 M of 1 and an α-ratio A of 0, the first 2 equations

10According to the MCNPX output, the multiplication is about 1.0002.
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of the system of equations (12) reduce to{
R1 = εν̄spFs

R2F = εD2s
(25)

which has two unknowns Fs and ε . This system of two equations contains enough266

information to solve for the efficiency ε and the source intensity ν̄spFs. We can thus267

solve for the mass of 252Cf using this simulated data set. Knowing that D2s is equal to268

1.595975 for 252Cf, the detection efficiency ε is equal to 7.6% with a relative error of269

0.2% and the 252Cf source intensity is 38,524±0.2% neutrons/s. The source intensity is270

thus underestimated by 3.2% with the equations with no multiple scattering correction.271

If we account for multiple scattering, we will use the following system of equations
instead of Eqs. (25):{

R1 = (1+ f2 +2 f3)εν̄spFs

R2F = f2+3 f3
1+ f2+2 f3

+(1+ f2 +2 f3)εD2s
(26)

How do we determine the correction factors f2 and f3? Simply by measuring the272

neutron spectrum in the liquid scintillators. This measured spectrum is shown in blue273

in Fig. 13a. In red, the reconstruction gest (Ed) generates the weights wEi that we need274

to calculate f2 and f3 (using Eqs. 23 and 24). The corrections f2 and f3 for 252Cf275

were already calculated in Sec. 5 and are in Table 1. Using these corrections, the276

source intensity now becomes 39,925 neutrons/s and the efficiency 7.3% with a relative277

error of 0.2%. With the multiple scattering correction, the source intensity is within 2278

standard deviations from the true value, which is a significant improvement over the279

estimate not using the multiple scattering correction.280

We verified that Eqs. 26 also hold for mono-energetic random (i.e. uncorrelated)281

neutron sources emitting single neutrons at a time. In this case, we showed that the282

measured value of R2F was equal to f2+3 f3
1+ f2+2 f3

, which is consistent with an expected D2s283

of 0. Of course, it is impossible to determine the detection efficiency ε , nor the mass284

of such sources in this case.285

We should emphasize that the authors did not expect perfect reconstruction of the286

source intensity. The reasons are multiple: (a) we have seen in Sec. 4.2 that the method287

does not reconstruct neutron source spectra perfectly, which leads to an error in the288

estimation of the multiple scattering fractions. In that respect, using a larger number289

of mono-energetic neutron beams with intermediate energies might help. (b) The point290

model theory due to Feynman [2] on which this work is based, makes several assump-291

tions. One of them is that the neutron detection efficiency ε does not depend on the292

neutron energy. Whereas this is a reasonable assumption for 3He tubes embedded in293

polyethylene, it is less so for liquid scintillators detecting fast neutrons, as shown in294

Fig. 9. Multiple scattering corrections are one of the corrections that is required to295

improve the reconstruction of the source mass, but it is only one of them.296

7. Conclusion297

With the help of theoretical expressions for the Feynman correlated moments of298

count distributions that account for multiple scatterings of neutrons, we showed that it299

19 LLNL-JRNL-666627



is possible to determine the fractions of neutrons scattering twice and thrice between300

liquid scintillators from the first 3 Feynman correlated moments of measured count301

distributions. These multiple scattering fractions can be determined for any neutron302

source, whether mono-energetic or not, and they strongly depend on the energy of the303

source neutrons.304

For nuclear materials undergoing either spontaneous or induced fission, the same305

theoretical expressions for the Feynman correlated moments can be used in conjunction306

with the measured deposited energy spectrum to apply corrections to the estimates307

of the detection efficiency, the system multiplication, and the masses of the sources308

under measurement. A simple simulation using a californium source showed that the309

determination of the 252Cf mass was improved using the multiple scattering correction.310

Also, we were able to show that measuring the spectrum of fast neutrons depositing311

energy in the liquid scintillator array reveals spectral information about the neutron312

source.313
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Appendix A. Derivation of the Feynman correlated moment equations for neu-317

trons scattering multiple times318

In this appendix, we will derive the expressions for C̄ (T ), Y2F (T ), Y3F (T ) two319

different ways: using generating functions based on the work of Böhnel [12], and a320

second method in the line of Hage-Cifarelli [13].321

Appendix A.1. Generating function322

Let’s consider the generating function for the en (ε) distribution, which gives the
probability of detecting n neutrons from a single fission chain. In the case when neu-
trons never multiple scatter between liquid scintillators, the generating function for the
en (ε) distribution can be written as

h(d (y)) =
∞∑

ν=0

en (ε)yn (A.1)

d(y) = (1− ε)+ εy (A.2)

where h(y) is the single neutron induced fission chain probability generating function323

defined by Eq. (12b) of Böhnel [12] and Eq. (34) of Prasad-Snyderman [4]. The gener-324

ating function parameter y in h(y) must be replaced by detector probability generating325

function d (y) through the compound process to account for detector efficiency ε .326
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When neutrons are allowed to multiple scatter between liquid scintillators, the gen-
erating function parameter y in h(y) must be replaced, through the compound process,
by the following detector probability generating function f (y):

f (y) = (1− ε)+ ε (1− f2− f3)y+ ε f2y2 + ε f3y3 (A.3)

where the first term (1− ε) — which could also be written as (1− ε)y0 — is the prob-327

ability that a neutron is not detected; the second term (or more precisely the coefficient328

of y) ε (1− f2− f3) is the probability that a neutron is detected by a single liquid scin-329

tillator; the third polynomial coefficient ε f2 is the probability that a neutron is detected330

by a liquid scintillator, scatters and is detected once and only once more by another331

liquid scintillator; and finally the last polynomial coefficient ε f3 is the probability that332

a neutron is detected thrice by 3 different liquid scintillators. The powers in y count the333

number of times a single neutron is detected by the array: 0, 1, 2 or 3 times.334

The single neutron induced fission chain probability generating function which ac-
counts for neutrons to multiple scatter between liquid scintillators becomes:

h( f (y)) =
∞∑

ν=0

en (ε)yn (A.4)

Taking the first derivative of h( f (y)) with respect to y, and setting y to 1, we get

∂h
∂y

∣∣∣∣
y=1

= h′
∣∣
y=1 f ′

= ε h′
∣∣
y=1 ((1− f2− f3)+2 f2 +3 f3)

= ε h′
∣∣
y=1 (1+ f2 +2 f3)

= R∗1 (1+ f2 +2 f3)

(A.5)

The second derivative leads to

1
2!

∂ 2h
∂y2

∣∣∣∣
y=1

=
1
2!

[
h′′
∣∣
y=1 f ′2 + h′

∣∣
y=1 f ′′

]
=

1
2!

h′′
∣∣
y=1 [ε (1− f2− f3)+2ε f2 +3ε f3]

2 + h′
∣∣
y=1 ε ( f2 +3 f3)

= R∗2 (1+ f2 +2 f3)
2 +R∗1 ( f2 +3 f3)

(A.6)

Similarly, the third derivative is written as

1
3!

∂ 3h
∂y3

∣∣∣∣
y=1

=
1
3!

[
h′′′
∣∣
y=1 f ′3 +3 h′′

∣∣
y=1 f ′ f ′′+ h′

∣∣
y=1 f ′′′

]
=

1
3!

h′′′
∣∣
y=1 ε

3 (1+ f2 +2 f3)
3 + h′′

∣∣
y=1 ε

2 (1+ f2 +2 f3)( f2 +3 f3)+ h′
∣∣
y=1 ε f3

= (1+ f2 +2 f3)
3 R∗3 +2(1+ f2 +2 f3)( f2 +3 f3)R∗2 + f3R∗1

(A.7)
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If needed, the fourth derivatives reads

1
4!

∂ 4h
∂y4

∣∣∣∣
y=1

=
1
4!

[
h′′′′
∣∣
y=1 f ′4 +6 h′′′

∣∣
y=1 f ′2 f ′′+3 h′′

∣∣
y=1 f ′′2 +4 h′′

∣∣
y=1 f ′ f ′′′+ h′

∣∣
y=1 f ′′′′

]
=

1
4!

[
h′′′′
∣∣
y=1 ε

4 (1+ f2 +2 f3)
4 +6 h′′′

∣∣
y=1 ε

3 (1+ f2 +2 f3)
2 (2 f2 +6 f3)

+3 h′′
∣∣
y=1 ε

2 (2 f2 +6 f3)
2 +24 h′′

∣∣
y=1 ε

2 (1+ f2 +2 f3) f3

]
=(1+ f2 +2 f3)

4 R∗4 +3(1+ f2 +2 f3)
2 ( f2 +3 f3)R∗3

+( f2 +3 f3)
2 R∗2 +2(1+ f2 +2 f3) f3R∗2

(A.8)

If needed, higher-order derivatives can be calculated trivially.335

Dividing Eqs. (A.6), (A.7) and (A.8) by Eq. (A.5), we get the following equations
for R2F , R3F and R4F :

R2F =
f2 +3 f3

1+ f2 +2 f3
+(1+ f2 +2 f3)R∗2F (A.9)

R3F =
f3

1+ f2 +2 f3
+2( f2 +3 f3)R∗2F +(1+ f2 +2 f3)

2 R∗3F (A.10)

R4F =

(
( f2 +3 f3)

2

1+ f2 +2 f3
+2 f3

)
R∗2F +3(1+ f2 +2 f3)( f2 +3 f3)R∗3F +(1+ f2 +2 f3)

3 R∗4F

(A.11)

Appendix A.2. Combinatorial expansion336

An alternative way to get to the same result is by starting with Λn (T ), the probabil-
ity to count n neutrons from the same fission chain in a random time gate of duration T .
One can derive the expressions for C̄ (T ) starting from the equations11 for the Λn (T )
including single neutrons registering multiple counts in different liquid scintillators in

11See Eqs.(3), (54), (55) and Appendix B of Ref. [13], or Eq. A.20 in Ref. [14].
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the limit of large time gate width T :

lim
T�α−1

Λn (T )
FsT

=

∞∑
ν=n

Pν

(
ν

n

)
ε

n (1− ε)ν−n f n
1

+

∞∑
ν=n−1

Pν

(
ν

n−1

)
ε

n−1 (1− ε)ν−n+1
(

n−1
1

)
f n−2
1 f2

+

∞∑
ν=n−2

Pν

(
ν

n−2

)
ε

n−2 (1− ε)ν−n+2
(

n−2
2

)
f n−4
1 f 2

2

+ ...

+

∞∑
ν=n−2

Pν

(
ν

n−2

)
ε

n−2 (1− ε)ν−n+2
(

n−2
1

)
f n−3
1 f3

+

∞∑
ν=n−4

Pν

(
ν

n−4

)
ε

n−4 (1− ε)ν−n+4
(

n−4
2

)
f n−6
1 f 2

3

+ ...

+

∞∑
ν=n−3

Pν

(
ν

n−3

)
ε

n−3 (1− ε)ν−n+3 (n−3)!
1!1!(n−5)!

f n−5
1 f2 f3

+

∞∑
ν=n−4

Pν

(
ν

n−4

)
ε

n−4 (1− ε)ν−n+4 (n−4)!
2!1!(n−7)!

f n−7
1 f 2

2 f3

+ ...

+

∞∑
ν=n−5

Pν

(
ν

n−5

)
ε

n−5 (1− ε)ν−n+5 (n−5)!
1!2!(n−8)!

f n−8
1 f2 f 2

3

+

∞∑
ν=n−6

Pν

(
ν

n−6

)
ε

n−6 (1− ε)ν−n+6 (n−6)!
2!2!(n−10)!

f n−10
1 f 2

2 f 2
3

+ ...

(A.12)

where f2 and f3 are the probabilities that a neutron detected in one liquid scintillator337

scatters and registers one or two more counts in other liquid scintillators, respectively.338

f1 is the probability that a neutron detected in one liquid scintillator does not register339

more counts in other liquid scintillators, so that the f distribution is normalized, f1 =340

1− f2− f3. If we were to account for higher order scattering events, we would have341

f1 = 1−
∑

∞

i=2 fi.342

Here is how to interpret Eq. (A.12): the first term in the series is a summation343

of probabilities to detect n neutrons from a single fission chain producing ν neutrons344

where none of the ν neutrons registered multiple counts. Each one of the probabilities345

in the sum is thus multiplied by f n
1 , the probability that none of the n neutrons detected346

registered multiple counts. The second term in the series is a summation of proba-347

bilities to detect n neutrons from a single fission chain producing ν neutrons, where348

n−2 of the ν neutrons produced by the chain did not register multiple counts in liquid349

23 LLNL-JRNL-666627



scintillators, and one neutron from this fission chain registered two counts in differ-350

ent liquid scintillators. Each one of the probabilities in the sum is thus multiplied by351

f n−2
1 and f2: the probability that n− 2 neutrons registered single detected events and352

the probability that one neutron was detected in two different scintillators. Because353

the neutron registering two counts can be any of the n−1 neutrons, we need to multi-354

ply these probabilities by the number of ways one can choose 1 neutron among n− 1355

neutrons, i.e.
(n−1

1

)
.356

The first term in the second group of terms in Eq. (A.12) is a summation of prob-357

abilities to detect n neutrons from a single fission chain producing ν neutrons, where358

n−3 of the ν neutrons produced by the chain did not register multiple counts in liquid359

scintillators, and one neutron from this fission chain registered three counts in different360

liquid scintillators. Each one of the probabilities in the sum is thus multiplied by f n−3
1361

and f3: the probability that n− 3 neutrons registered single detected events and the362

probability that one neutron was detected in three different scintillators. Because the363

neutron registering three counts can be any of the n− 2 neutrons, we need to multi-364

ply these probabilities by the number of ways one can choose 1 neutron among n− 2365

neutrons, i.e.
(n−2

1

)
.366

If one denotes by Λ∗n (T ) the expressions Λn (T ) when neutrons are not counted
multiple times (i.e. with fi>1 = 0), we get

lim
T�α−1

Λ
∗
n (T ) = FsT

∞∑
ν=n

Pν

(
ν

n

)
ε

n (1− ε)ν−n (A.13)

One notices that each one of the terms in the series in Eq. (A.12) is a different order of
Λ∗n (T ) multiplied by a multinomial coefficient of the form

(
∑

∞

i=1 ji)!∏
∞

i=1 ji!

∞∏
i=1

f ji
i (A.14)

The multinomial coefficients are counting the number of ways to distribute the different367

populations of neutrons (those registering one count, those registering two counts, etc.).368

When there are only two kinds of multiple counts (e.g. f1 and f2), the multinomial
reduces to a binomial coefficient(

i+ j
i

)
f i
m f j

n (A.15)

Using the Λ∗n (T ) notation, the first term of Eq. (A.12) becomes f n
1 Λ∗n, the second term(n−1

1

)
f n−2
1 f2Λ∗n−1, the third one

(n−2
2

)
f n−4
1 f 2

2 Λ∗n−2, etc. Eq. (A.12) can thus be rewrit-
ten more compactly as

lim
T�α−1

Λn (T ) =
j≤n/3∑
j=0

i≤(n−3∗ j)/2∑
i=0

(n−2 j− i)!
i! j!(n−3 j−2i)!

f n−3 j−2i
1 f i

2 f j
3 Λ
∗
n−2 j−i (A.16)
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The first few Λn (T ) are thus

lim
T�α−1

Λ1 (T ) = Λ
∗
1 f1

lim
T�α−1

Λ2 (T ) = Λ
∗
2 f 2

1 +Λ
∗
1 f2

lim
T�α−1

Λ3 (T ) = Λ
∗
3 f 3

1 +Λ
∗
2

(
2
1

)
f1 f2 +Λ

∗
1 f3

lim
T�α−1

Λ4 (T ) = Λ
∗
4 f 4

1 +Λ
∗
3

(
3
1

)
f 2
1 f2 +Λ

∗
2 f 2

2 +Λ
∗
2

(
2
1

)
f1 f3

(A.17)

Using these expressions for Λn (T ), C̄ (T ) can be written as12

C̄ (T ) =
∞∑

i=1

(
i
1

)
Λi

= (1+ f2 +2 f3)

∞∑
i=1

(
i
1

)
Λ
∗
i

= (1+ f2 +2 f3)C̄∗ (T )

(A.18)

which means that the hypothetical C̄∗ (T )13 is increased by the factor 1+ f2 + 2 f3.369

In the limiting case where f2 is 1, that is, all neutrons register two counts in the liquid370

scintillators, the measured count rate is twice the hypothetical count rate. In the limiting371

case where f3 is 1, where all neutrons register three counts in the liquid scintillators,372

the measured count rate is thrice the hypothetical count rate. These two limiting cases373

are consistent with our expectations.374

Similarly, Y2 (T ) can be written as [4]

Y2 (T ) =
∞∑

i=2

(
i
2

)
Λi

= ( f2 +3 f3)C̄∗ (T )+(1+ f2 +2 f3)
2 Y ∗2 (T )

(A.19)

and Y3 (T ) as

Y3 (T ) =
∞∑

i=3

(
i
3

)
Λi

= f3C̄∗ (T )+2(1+ f2 +2 f3)( f2 +3 f3)Y ∗2 (T )+(1+ f2 +2 f3)
3 Y ∗3 (T )

(A.20)

Dividing both expressions by C̄ (T ), we get

Y2F (T ) =
f2 +3 f3

1+ f2 +2 f3
+(1+ f2 +2 f3)Y ∗2F (T ) (A.21)

12Equation (115) for Y1in Ref. [4].
13Hypothetical number of counts which one would measure if individual neutrons could not be counted

multiple times.
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and

Y3F (T ) =
f3

1+ f2 +2 f3
+2( f2 +3 f3)Y ∗2F (T )+(1+ f2 +2 f3)

2 Y ∗3F (T ) (A.22)

Nomenclature375

T = time gate duration.
Bn (T ) = number of times n neutrons were counted a random time gate

of duration T .
bn (T ) = probability to get n counts in a random time gate of duration T .
p = probability that a neutron will induce fission in a nucleus on

interaction.
q = probability that a neutron will not induce fission in a nucleus on

interaction.
M = multiplication of the object.
qM = escape multiplication.
Fs = intensity of spontaneous fission source in units of spontaneous

fissions per second.
A = α-ratio, the ratio of neutrons emitted by sources emitting sin-

gle neutrons to neutrons emitted by sources emitting multiple
neutrons simultaneously.

Cn & C = probability that a fission will emit n neutrons in induced fission
& induced fission multiplicity distribution.

Csp
n & Csp = probability that a fission will emit n neutrons in spontaneous

fission & spontaneous fission multiplicity distribution.
Dn = nthcombinatorial moment of induced fission multiplicity distri-

bution.
Dn sp = nthcombinatorial moment of spontaneous fission multiplicity

distribution.
Pν = probability that the fission chain created n neutrons (excluding

those internally absorbed to create subsequent fissions).
en = probability of detecting n neutrons from a single fission chain.
C̄ (T ) = number of counts averaged over all time gates of duration T .
Y2F (T ) = the excess over unity of the variance to mean ratio of bn (T ), or

physically speaking the correlated pairs relative to the counts,
sometimes referred to as the Feynman correlated moment.

Y3F (T ) = the skewness to mean ratio of bn (T ), or physically speaking the
correlated triples relative to the counts.

Y2 (T ) = Y2F (T ) multiplied by C̄ (T ).
Y3 (T ) = Y3F (T ) multiplied by C̄ (T ).
R1 = count rate measured by the detector.
R2F = asymptote of Y2F (T ).
R3F = asymptote of Y3F (T ).
f1 = probability of counting individual neutrons once.
f2 = probability of counting individual neutrons twice.
f3 = probability of counting individual neutrons thrice.

376
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377

h(y) = generating function for the en distribution.
R∗1 = the hypothetical count rate which one would measure if individ-

ual neutrons could not be counted multiple times.
R∗n (T ) = the hypothetical value of Rn =

1
n!

∂ nh(y)
∂yn which one would obtain

if individual neutrons could not be counted multiple times.
Ed = electron-equivalent energy measured by liquid scintillators and

deposited by fast neutrons.
g̃(Ed) = measured liquid scintillator spectrum.
gEi (Ed) = probability that a source neutron of initial energy Ei will deposit

an electron-equivalent energy within bin Ed . Basis functions for
spectrum reconstruction.

gr (Ed) = reconstructed liquid scintillator spectrum using basis functions
gEi (Ed).

378

Greek:379

ε = detection efficiency, or probability to detect a neutron.
ν̄ = average number of neutrons produced in induced fission.
ν̄sp = average number of neutrons produced in spontaneous fission.
α = inverse fission chain evolution time scale.
Λn () = probability to count n neutrons from the same fission chain in a

random time gate of duration T .
Λ∗n () = hypothetical probability to count n neutrons from the same fis-

sion chain in a random time gate of duration T , when individual
neutrons are not counted multiple times.

380
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